Negation Scope Delimitation in Clinical Text Using Three Approaches: NegEx; PyConTextNLP and SynNeg

نویسندگان

  • Hideyuki Tanushi
  • Hercules Dalianis
  • Martin Duneld
  • Maria Kvist
  • Maria Skeppstedt
  • Sumithra Velupillai
چکیده

Negation detection is a key component in clinical information extraction systems, as health record text contains reasonings in which the physician excludes different diagnoses by negating them. Many systems for negation detection rely on negation cues (e.g. not), but only few studies have investigated if the syntactic structure of the sentences can be used for determining the scope of these cues. We have in this paper compared three different systems for negation detection in Swedish clinical text (NegEx, PyConTextNLP and SynNeg), which have different approaches for determining the scope of negation cues. NegEx uses the distance between the cue and the disease, PyConTextNLP relies on a list of conjunctions limiting the scope of a cue, and in SynNeg the boundaries of the sentence units, provided by a syntactic parser, limit the scope of the cues. The three systems produced similar results, detecting negation with an F-score of around 80%, but using a parser had advantages when handling longer, complex sentences or short sentences with contradictory statements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negation detection in Swedish clinical text: An adaption of NegEx to Swedish

BACKGROUND Most methods for negation detection in clinical text have been developed for English text, and there is a need for evaluating the feasibility of adapting these methods to other languages. A Swedish adaption of the English rule-based negation detection system NegEx, which detects negations through the use of trigger phrases, was therefore evaluated. RESULTS The Swedish adaption of N...

متن کامل

NegBio: a high-performance tool for negation and uncertainty detection in radiology reports

Negative and uncertain medical findings are frequent in radiology reports, but discriminating them from positive findings remains challenging for information extraction. Here, we propose a new algorithm, NegBio, to detect negative and uncertain findings in radiology reports. Unlike previous rule-based methods, NegBio utilizes patterns on universal dependencies to identify the scope of triggers ...

متن کامل

A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries

Narrative reports in medical records contain a wealth of information that may augment structured data for managing patient information and predicting trends in diseases. Pertinent negatives are evident in text but are not usually indexed in structured databases. The objective of the study reported here was to test a simple algorithm for determining whether a finding or disease mentioned within ...

متن کامل

Journal of Biomedical Informatics

Narrative reports in medical records contain a wealth of information that may augment structured data for managing patient information and predicting trends in diseases. Pertinent negatives are evident in text but are not usually indexed in structured databases. The objective of the study reported here was to test a simple algorithm for determining whether a finding or disease mentioned within ...

متن کامل

Comparing Natural Language Processing Tools to Extract Medical Problems from Narrative Text

To help maintain a complete, accurate and timely Problem List, we are developing a system to automatically retrieve medical problems from free-text documents. This system uses Natural Language Processing to analyze all electronic narrative text documents in a patient's record. Here we evaluate and compare 3 different applications of NLP technology in our system: the first using MMTx (MetaMap Tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013